### **Recent CORC® Progress**

### Danko van der Laan, Jeremy Weiss and Dustin McRae

Advanced Conductor Technologies & University of Colorado Boulder, Colorado, USA

#### Work supported by

U.S. Department of Energy awards numbers DE-SC0009545, DE-SC0013723, DE-SC0014009, DE-SC0015775 and DE-SC0018127





### CORC® magnet cables and wires

### CORC® wires (2.5-4.5 mm diameter)

- Wound from 2-3 mm wide tapes with 30 µm substrate
- Typically no more than 30 tapes
- Highly flexible with bending down to < 50 mm diameter



### CORC® cable (5-8 mm diameter)

- Wound from 3-4 mm wide tapes with 30-50 µm substrate
- Typically no more than 50 tapes
- Flexible with bending down to > 100 mm diameter


#### CORC®-Cable In Conduit Conductor (CICC)

- Performance as high as 100,000 A (4.2 K, 20 T)
- Combination of multiple CORC® cables or wires
- Bending diameter about 1 meter

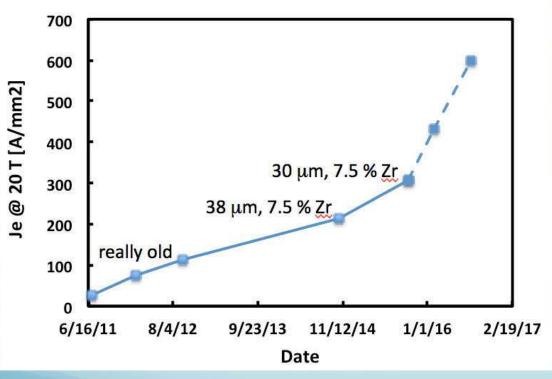


CORC\*



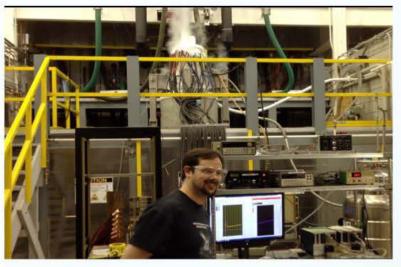







### $J_{e}$ in CORC® accelerator cables: current and future

### CORC® cable J<sub>e</sub> on track to 600 A/mm<sup>2</sup> at 20 T


- .....
- $J_e$  of 309 A/mm<sup>2</sup> at 20 T achieved in Oct. 2015





#### In-field CORC® cable testing @ 100 mm

Large bore magnet at NHMFL (17 T)



#### Problems!

NHMFL magnet decommissioned

Tests now need to be performed in-house!





### In-house test facilities Univ. of Colorado

### In-field cable test setup

- Several magnets: 12 T (80 mm cold bore), 14.5 T (56 mm bore)
- Currents exceeding 16 kA dc and fast ramping (> 1 MA/s)

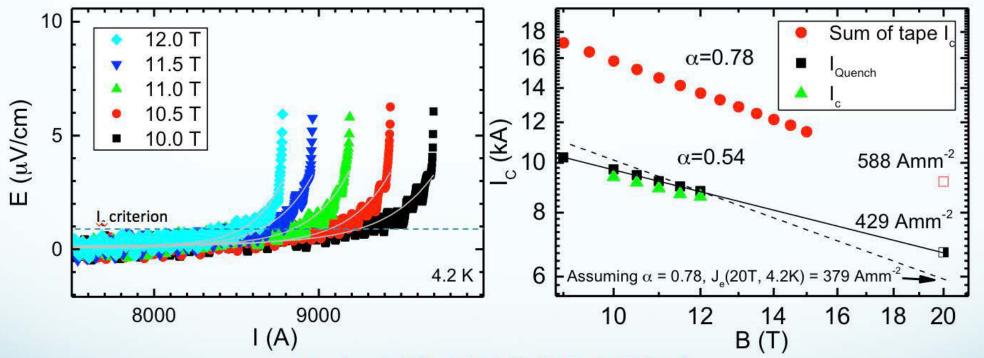




Design and picture

### Mechanical testing setup

- Transverse compression
- Axial tension
- Loads up to 10,000 lbs
- Including stress cycling >100,000 cycles



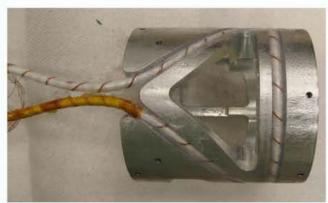



### Record CORC® magnet wire performance

### High-J<sub>e</sub> CORC® wire layout

- 50 tapes, 2-3 mm wide, 30 μm substrate
- 4.46 mm CORC® wire diameter
- 67 mm hairpin

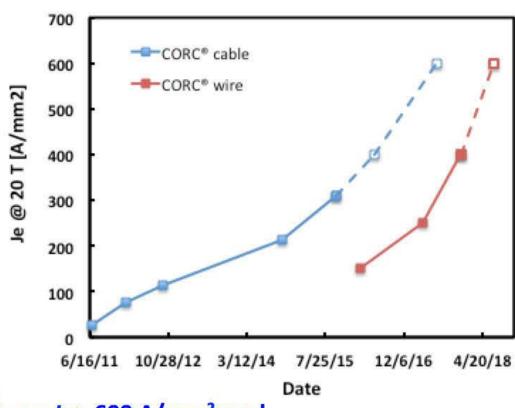



- $I_c = 8,591 \text{ A} (4.2 \text{ K}, 12 \text{ T}, 1 \mu\text{V/cm})$
- Projected J<sub>e</sub>(20 T) between 379 and 429 A/mm<sup>2</sup>
- Projected I<sub>c</sub>(20 T) = 6,500 A





### CORC® magnet cable and wire performance


## CORC® cable tested at 100 mm diameter (2011 – 2015)



CORC® wire tested at 60 mm diameter (2016 – )

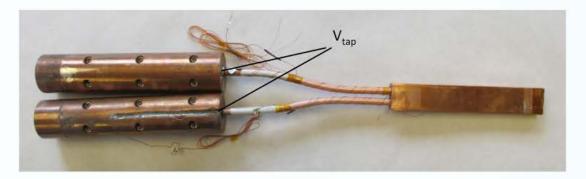


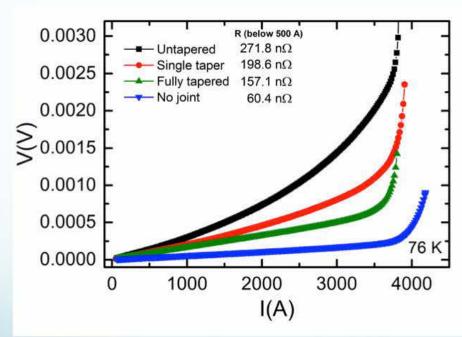
Design and picture UNIVERSITY OF TWENTE.

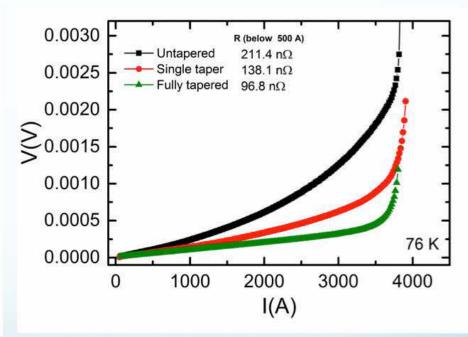


### Closing in on $J_e > 600 \text{ A/mm}^2 \text{ goal}$

- J<sub>e</sub> (20 T) now exceeded 400 A/mm<sup>2</sup> in CORC® wire
- Combined with (20 T) > 6,500 A
- Next step is thinner substrates 20 25 μm
- More details in Jeremy's talk later today





### CORC® cable joint resistance 76 K

### **CORC®** cable joint

- 38 tapes, 10 layers
- 15 cm long joint, 100% In
- Different number of tapers

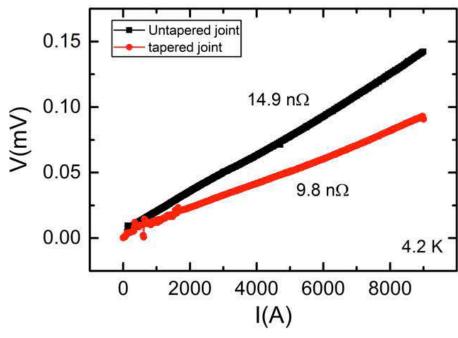






- Contact resistance lowest at full taper
- Joint R(76 K) = 96.8 nΩ






### CORC® cable joint resistance 4.2 K

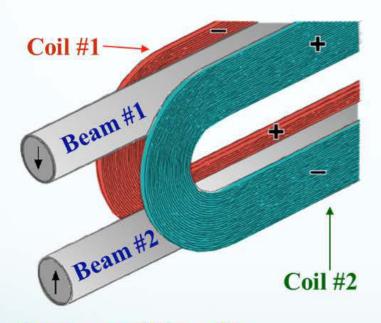
#### CORC® cable joint tested at 4.2 K

- Current up to 9,000 A
- Measured in self-field



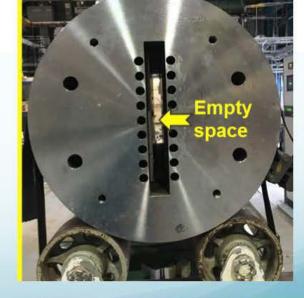


- Contact resistance lowest at full taper
- Joint R(4.2 K) = 9.8 nΩ
- Factor of 10 lower than at 76 K
- CORC®-CICC (6 cables) suggest R=1.5 nΩ
- Further reduction possible






### Common coil magnet from CORC® cables (SBIR Ph. I)


### Magnet program with Brookhaven National Laboratory (Ramesh Gupta)

- Combine CORC® insert with 10 T LTS common coil outsert
- CORC® cable with expected J<sub>e</sub>(20 T) 500 A/mm<sup>2</sup> delivered
- Operating current 10 kA connected in series with LTS outsett



#### **Common coil benefits**

- Only large bending diameters required
- Allowing CORC® cables to be used
- Allowing use of highest J<sub>e</sub> cables









### The road to 21 T in CORC®-CCT magnets (SBIR Ph. 2)

### Magnet program with Lawrence Berkeley Nat. Lab. (Xiaorong Wang)

- Develop a canted-cosine theta CORC® insert magnet
- Generate 5 T in a 16 T background field
- More details by Xiaorong Wang later today

### Step 1: 2-Layer, 40-turns CCT magnet (C1)

- Generate 1 T in self-field
- CORC® wire J<sub>e</sub>(20 T) = 150-200 A/mm<sup>2</sup>
- Learn to wind and protect CORC®-CCT magnets

# CCT-C1

### Step 2: 4-Layer, 40-turns magnet (C2)

- Generate 3 T in self-field
- CORC® wire J<sub>e</sub>(20 T) = 200-300 A/mm<sup>2</sup>
- CORC® wire bendable to 60 mm diameter

### Step 3: 6-Layer, 40-turns CCT magnet (C3)

- Generate 5 T in self-field
- CORC® wire  $J_e(20 \text{ T}) = 300-400 \text{ A/mm}^2$
- CORC® wire bendable to 30 mm diameter

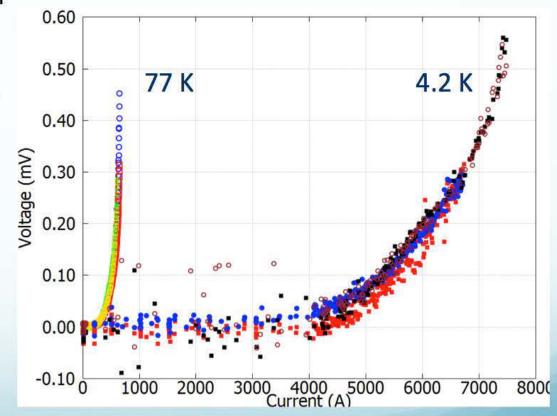








### Baby coil C0a: CORC® wire test for CCT-C1


### CCT COa: CORC® wire with 16 tapes

- 2 Layers
- 3 Turns per layer
- Inner layer I.D. 70 mm
- Minimum bending diameter 50 mm

#### **CCT C0a performance**

- I<sub>c</sub> (77 K) = 646 A (layer A) and 675 A (layer B)
- $I_c$  (4.2 K) = 6,700 A (both layers)

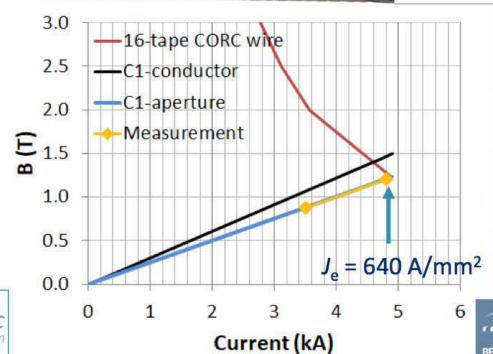











### CORC® CCT-C1

### **CCT-C1 Magnet wound at LBNL**

- 2 Layers, 40 turns per layer
- LBNL ordered 50 m of CORC® wire in 2016
- CORC® wire contains 16 tapes, J<sub>e</sub> (20 T) = ~150 A/mm<sup>2</sup>



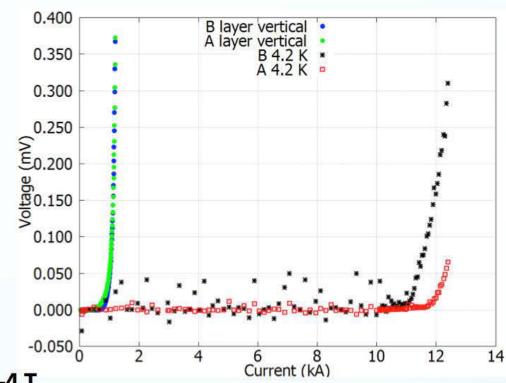
CCT-C1 generated 1.2 T at 4,800 A (104 % of expected performance)










### Baby coil C0b: CORC® wire test for CCT-C2

### CCT C0b: CORC® wire with 29 tapes

- 3-turn per layer
- Inner layer I.D. 85 mm
- CORC® wire J<sub>e</sub> (20 T) = ~300 A/mm<sup>2</sup>

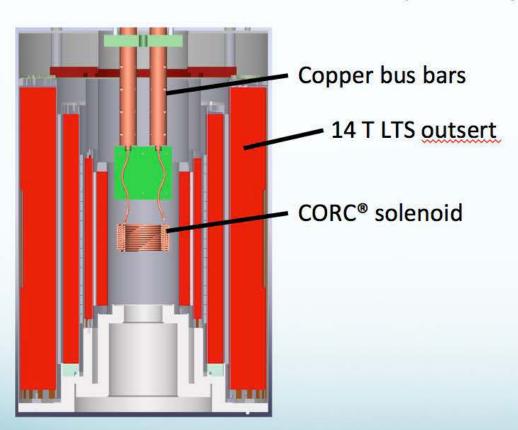
#### **CCT C0b performance**

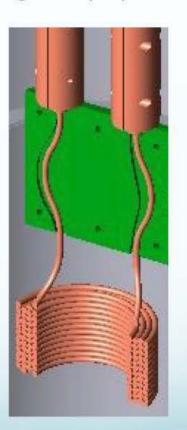
- I<sub>c</sub> (77 K) = 1.092, 1,067 A (layer A, B)
- I<sub>c</sub> (4.2 K) = 12,141, 11,078 A (layer A,B)
- Dipole field 0.68 T (4.2 K)
- Peak J<sub>e</sub>(4.2 K) = 1,198 A/mm<sup>2</sup>
- Expected field of CCT-C2 (40 turns) ~3-4 T



- Order for 75 m of high-J<sub>e</sub> CORC® wire received from LBNL
- Full-size coil C2 expected to be wound in Q2 2018






### CORC® high-field insert solenoid (SBIR Ph. 2)

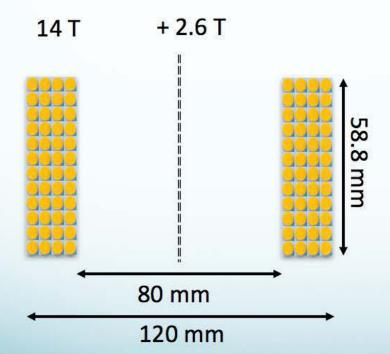
### Magnet program with ASC-NHMFL (David Larbalestier, Dima Abraimov, Huub Weijers)

- Develop high-field insert solenoid wound from CORC® wires
- Test insert magnet at 14 T background field at ASC-NHMFL
- Aim for added field of at least 2-3 T, maybe 5 T depending on tape performance



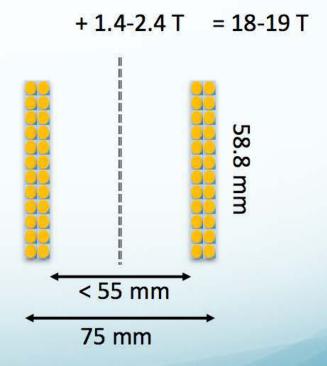









### CORC® insert wire details


### Coil 1 (Q2 2018)

- Wound form ~17 meters of CORC® wire
- I<sub>opp</sub> (16 T) about 5,000 A
- J<sub>e</sub>(20 T) about 250 A/mm<sup>2</sup>
- Total of 48 turns in 4 layers
- Field generated 2.6 T in 14 T background



#### Coil 2 (After coil 1)

- Wound form 6-10 meters of CORC® wire
- Connected in series with Coil 1
- Goal is to generate 1.4-2.4T









### Summary

#### Univ. of Colorado in-house cable test facility up and running

- Cable testing at up to 14.5 T and currents of 16 kA
- Mechanical testing up to 10,000 lbs, including cyclic loads

### **CORC®** cables and wire performance

- In-house facility demonstrated  $J_e(20 \text{ T}) = 400 \text{ A/mm}^2$  in 67 mm bending diameter
- $J_e(20 \text{ T}) = 600 \text{ A/mm}^2 \text{ on the horizon}$
- CORC® cable joint resistance now < 100 n $\Omega$  at 76 K and < 10 n $\Omega$  at 4.2 K

#### **CORC®** cables and wires going into magnets

- Common Coil at Brookhaven Nat. Lab. (SIBR Phase I)
  - 500 A/mm<sup>2</sup> J<sub>e</sub>(20 T) CORC® cable delivered
- CCT 5 T (self-field) magnet at Lawrence Berkeley Nat. Lab (SIBR Phase II)
  - CCT-C1 (2x 18 meters CORC® wire): completed and tested at 1.2 T
  - CCT-C2 (4x 18 meters): CORC® wire in production
  - CCT-C3 first order design ready
- Insert solenoid magnet at the ASC-NHMFL (SIBR Phase II)
  - Coil 1 design complete: Iopp (16 T) = 5 kA
  - CORC® wire design complete and tested  $(J_e (20 \text{ T}) = 250 \text{ A/mm}^2)$
  - Coil test anticipated Q2 2018 (magnet pit needs digging!)



