Electromechanical Performance of CORC[®] Cables and Wires under Axial Tension and Transverse Compression

Dustin McRae, Danko van der Laan & Jeremy Weiss

Advanced Conductor Technologies & University of Colorado, Boulder, CO USA

Advanced Conductor Technologies www.advancedconductor.com

MEM18, 20-June-2018, Andong, Korea

CORC[®] magnet cables and wires

RE-Ba₂Cu₃O_{7- δ} coated conductor made by SuperPower Inc.

Single tape wound into a CORC[®] cable

CORC[®] wires (2.5-4.5 mm diameter)

- Wound from 2-3 mm wide tapes with 30 μm substrate
- Typically no more than 30 tapes
- Highly flexible with bending down to < 50 mm diameter

CORC® cable (5-8 mm diameter)

- Wound from 3-4 mm wide tapes with 30-50 μm substrate
- Typically no more than 50 tapes
- Flexible with bending down to > 100 mm diameter

Electromechanical Characterization

CORC® feasibility as a practical magnet conductor

- High magnetic fields and high current density require mechanically robust conductors
- Will require extensive electromechanical characterization

Characterization critical for magnet design:

- I_c retention with applied transverse compressive stress
- I_c retention in axial tension

Testing and development of wires and cables:

• Understanding mechanisms of I_c degradation due to mechanical stresses will accelerate optimization of conductor architecture for specific applications

Sample Characteristics That May Influence Behavior

Gap spacing between tapes

- Tapes are wound at opposite direction between layers
- Tapes thus cross gaps of underlying layer
- CORC[®] cables and wires have gaps ranging from 0.2 to over 0.5 mm

Copper thickness

• Thicker copper is known to decrease critical transverse stress

Sample Characteristics That May Influence Behavior

REBCO layer winding strain

- Bending strain added to REBCO layer during winding
 - Tapes are wound onto former with REBCO layer on inside (compression)
- Depends on former diameter and substrate thickness
- Critical bending strain is about -1.25 %

Sample Description

CORC® wire 1

- 11 layers, 27 tapes total
- 2 mm wide tapes
- Gap spacing 0.3 0.4 mm
- 30 μm thick substrate
- 2.55 mm thick former
- REBCO winding strain: -1.16 %

CORC[®] wire 2

- 6 layers, 12 tapes total
- 3 mm wide tapes
- Gap spacing 0.4 mm
- 30 μm thick substrate
- 3.20 mm thick former
- REBCO winding strain: -0.93 %

CORC® cables

- 3 layers, 9 tapes total
- 4 mm wide tapes
- Gap spacing 0.1 mm or 0.5 mm
- 50 µm thick substrate
- 4.92 mm thick former
- REBCO winding strain: -1.00 %

Advanced Conductor Technologies www.advancedconductor.com

6

Transverse Compressive Test Equipment

MTS test setup, load capacity 10,000 lbs (44 kN)

Side view

Load applied results in a linecontact against the conductor

- Test Temp = 76 K
- Anvil Length = 50 mm
 - 2-6 twist pitches engaged

Monotonic Test Procedure

Monotonic loading procedure

- Performed incrementally in load control
 - Accounts for continuously-changing state of thermal contraction in load fixture Ο
- Hold load constant 1.
- 2. Run I_c test
- 3. Load to next load increment
- 4. Repeat

Monotonic Test Procedure

Monotonic loading procedure

- Performed incrementally in load control
 - Accounts for continuously-changing state of thermal contraction in load fixture
- 1. Hold load constant
- 2. Run I_c test
- 3. Load to next load increment
- 4. Repeat

Monotonic Transverse Compression Data

General trends to note

- CORC[®] wires with smallest former, and REBCO layer close to -1.25 % critical strain are most sensitive to transverse compression
- CORC[®] wires and cables with comparable REBCO strain show similar load dependence

Advanced Conductor Technologies

Contact Area Measurements

Contact Area Measurements

- Contact area begins as line contact and increases as load is increased
- Pressure film used in LN₂ to estimate contact area at selected loads:

CORC[®] wire 1: 200 kN/m
CORC[®] wire 2: 200, 250, 300 kN/m
CORC[®] cable: 200 kN/m

• Contact area calculated as (average width) x (anvil length)

Contact Area Stress

Contact Stress

- Contact stress normalized by pressure film measured area at 200 kN/m
- Rate of contact area increase with increasing load is likely different for each conductor, but this gives a first order estimate

Assigning Critical Load Criterion

Setting a standard for $\mathbf{I}_{\mathbf{c}}$ critical load

- Similar to 0.2% offset yield strength and 1 μ V/cm offset I_c criteria, critical load can be standardized with a common I_c retention criterion
- This would allow easier electromechanical comparison between different conductor layouts, as well as different conductors altogether

Conductor		CORC®	CORC®	CORC®
		Wire 1	Wire 2	Cable
lc/lc ₀ = 0.97	P _{crit}	115.4	217.0	218.8
	(kN/m)			
	Error	11.9	25.1	26.7
	(± kN/m)			
lc/lc ₀ = 0.95	P _{crit}	133.4	243.1	259.9
	(kN/m)			
	Error	10.8	27.5	12.3
	(± kN/m)			
lc/lc ₀ = 0.90	P _{crit}	162.6	283.8	329.3
	(kN/m)			
	Error	15.0	35.3	21.5
	(± kN/m)			
	# curves	2	Λ	4
	analyzed	3	4	4

Advanced Conductor Technologies www.advancedconductor.com

13

Fatigue Test Procedure

Fatigue test procedure

- Monotonic loading of virgin sample to pre-selected I_c degradation load (example shown: $I_c/I_{c0} = 0.80$ corresponding to $P_{max} = 394$ kN/m)
- Fatigue cycling at stress amplitude ratio $P_{min}/P_{max} = 0.1$
- I_c measured at peak load up to 100,000 cycles

Fatigue Test Procedure

Fatigue test procedure

- Monotonic loading of virgin sample to pre-selected I_c degradation load (example shown: $I_c/I_{c0} = 0.80$ corresponding to $P_{max} = 394$ kN/m)
- Fatigue cycling at stress amplitude ratio $P_{min}/P_{max} = 0.1$
- I_c measured at peak load up to 100,000 cycles

Fatigue Data under Transverse Compression

Overall promising for safe operation in magnet applications

- I_c does not drop off a cliff with cycle count at a constant load amplitude
- Degrades gradually and predictably, usually only after significant initial degradation

Some trends can be seen

 Gap spacing has small effect on fatigue degradation

Advanced Conductor Technologies www.advancedconductor.com

16

Fatigue Data under Transverse Compression

Overall promising for safe operation in magnet applications

- I_c does not drop off a cliff with cycle count at a constant load amplitude
- Degrades gradually and predictably, usually only after significant initial degradation

Some trends can be seen

- Gap spacing has small effect on fatigue degradation
- Former size and corresponding REBCO winding strain has significant impact on fatigue degradation

Preliminary Axial Tension Measurements

Test Setup

- Test machine capacity = 13 kN
- Load applied through current injection terminals
- Monotonic tests performed in load control increments

Preliminary Axial Tension Measurements

Preliminary data

- One monotonic specimen each of CORC[®] wires 1 and 2 tested to-date
- Cross-section calculated by wire outer diameter (including heatshrink)
- I_c degrades sharply after onset of degradation, similar to individual tapes

Advanced Conductor Technologies

Preliminary Conclusions

Although tests are ongoing and different sample configurations are being tested as we speak

- The resilience of CORC[®] cables and wires in transverse compression up to 100,000 cycles is very promising
- The I_c retention after 100,000 cycles is especially high when the peak load did not degrade I_c by more than 5 10 % before cycling
- Magnets will likely be designed at transverse loads resulting in no more than 3 – 5 % I_c degradation, which means that load cycling likely won't have a significant impact on the magnet performance

Next investigations:

- Post-mortem extracted tape measurements on axial tension specimens, to investigate primary failure mechanisms in monotonic tension
- In-situ strain measurements in axial tension (I_c-ε)
- Fatigue behavior in axial tension
- Effect of winding angle on transverse compression performance

