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CORC® magnet cables and wires
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CORC® wires (2.5-4.5 mm diameter)
• Wound from 2-3 mm wide tapes with 30 mm substrate
• Typically no more than 30 tapes
• Highly flexible with bending down to < 50 mm diameter

CORC® cable (5-8 mm diameter)
• Wound from 3-4 mm wide tapes with 30-50 mm substrate
• Typically no more than 50 tapes
• Flexible with bending down to > 100 mm diameter

RE-Ba2Cu3O7-d coated conductor made by 
SuperPower Inc.

Single tape wound into a CORC® cable



Electromechanical Characterization
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CORC® feasibility as a practical magnet conductor 
• High magnetic fields and high current density require mechanically robust 

conductors
• Will require extensive electromechanical characterization

Characterization critical for magnet design:
• Ic retention with applied transverse compressive stress
• Ic retention in axial tension

Testing and development of wires and cables:
• Understanding mechanisms of Ic degradation due to mechanical stresses will 

accelerate optimization of conductor architecture for specific applications



Sample Characteristics That May Influence Behavior
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Copper thickness
• Thicker copper is known to decrease critical transverse stress

Gap spacing between tapes
• Tapes are wound at opposite direction between layers
• Tapes thus cross gaps of underlying layer
• CORC® cables and wires have gaps ranging from 0.2 to over 0.5 mm



Sample Characteristics That May Influence Behavior
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REBCO layer winding strain
• Bending strain added to REBCO layer during winding

o Tapes are wound onto former with REBCO layer on inside (compression)
• Depends on former diameter and substrate thickness

• Critical bending strain is about -1.25 %

Tape Ic retention vs former diameter Tape Ic retention vs winding strain



Sample Description
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CORC® cables
• 3 layers, 9 tapes total
• 4 mm wide tapes
• Gap spacing 0.1 mm or 0.5 mm
• 50 mm thick substrate
• 4.92 mm thick former
• REBCO winding strain: -1.00 %

CORC® wire 1
• 11 layers, 27 tapes total
• 2 mm wide tapes
• Gap spacing 0.3 - 0.4 mm
• 30 mm thick substrate
• 2.55 mm thick former
• REBCO winding strain: -1.16 %

CORC® wire 2
• 6 layers, 12 tapes total
• 3 mm wide tapes
• Gap spacing 0.4 mm
• 30 mm thick substrate
• 3.20 mm thick former
• REBCO winding strain: -0.93 %

CORC® wire 2

CORC® cable

CORC® wire 1



Transverse Compressive Test Equipment
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MTS test setup, load capacity 10,000 lbs (44 kN)

Side view

Terminal adapterTerminal adapter

CORC® cable

Anvil

CORC® cable

Load applied results in a line-
contact against the conductor

• Test Temp = 76 K
• Anvil Length = 50 mm

• 2-6 twist pitches engaged



Monotonic Test Procedure
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Monotonic loading procedure
• Performed incrementally in load control

o Accounts for continuously-changing state of thermal contraction in load fixture
1. Hold load constant
2. Run Ic test
3. Load to next load increment
4. Repeat 

Ic tests



Monotonic Test Procedure
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Typical Ic vs Transverse Load graph V-I curves at several loads

Monotonic loading procedure
• Performed incrementally in load control

o Accounts for continuously-changing state of thermal contraction in load fixture
1. Hold load constant
2. Run Ic test
3. Load to next load increment
4. Repeat 



Monotonic Transverse Compression Data
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General trends to note
• CORC® wires with smallest former, and REBCO layer close to -1.25 % critical strain are 

most sensitive to transverse compression
• CORC® wires and cables with comparable REBCO strain show similar load dependence

-1.0% REBCO 
winding strain

-0.93% REBCO winding strain

-1.16% REBCO 
winding strain

Ic/Ic0 vs Transverse Load



Contact Area Measurements

11

CORC® wire 1 – 200 kN/m

Contact Area vs Transverse Load

Contact Area Measurements
• Contact area begins as line contact and increases as load is increased
• Pressure film used in LN2 to estimate contact area at selected loads:

oCORC® wire 1: 200 kN/m
oCORC® wire 2: 200, 250, 300 kN/m
oCORC® cable:  200 kN/m

• Contact area calculated as (average width) x (anvil length)

CORC® wire 2 – 200 kN/m

CORC® cable  – 200 kN/m



Contact Area Stress

12

Ic vs Transverse Load Ic vs Contact Area Stress

Contact Stress
• Contact stress normalized by pressure film measured area at 200 kN/m
• Rate of contact area increase with increasing load is likely different for each 

conductor, but this gives a first order estimate

Normalized 
Contact Area 

Load



Assigning Critical Load Criterion
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Setting a standard for Ic critical load
• Similar to 0.2% offset yield strength and 1 μV/cm offset Ic criteria, critical load can be 

standardized with a common Ic retention criterion
• This would allow easier electromechanical comparison between different conductor 

layouts, as well as different conductors altogether

CORC® 

Wire 1

CORC® 

Wire 2

CORC® 

Cable

Pcrit 

(kN/m)
115.4 217.0 218.8

Error 

(± kN/m)
11.9 25.1 26.7

Pcrit 

(kN/m)
133.4 243.1 259.9

Error 

(± kN/m)
10.8 27.5 12.3

Pcrit 

(kN/m)
162.6 283.8 329.3

Error 

(± kN/m)
15.0 35.3 21.5

# curves 

analyzed
3 4 4

Conductor

Ic/Ic0 = 0.97

Ic/Ic0 = 0.95

Ic/Ic0 = 0.90



Fatigue Test Procedure
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Pmax = 394 kN/m

Fatigue test procedure
• Monotonic loading of virgin sample to pre-selected Ic degradation load 

(example shown: Ic/Ic0 = 0.80 corresponding to Pmax = 394 kN/m)
• Fatigue cycling at stress amplitude ratio Pmin/Pmax = 0.1
• Ic measured at peak load up to 100,000 cycles

Ic/Ic0 at Pmax vs cyclesInitial Ic degradation, first cycle



Fatigue Test Procedure
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Fatigue test procedure
• Monotonic loading of virgin sample to pre-selected Ic degradation load 

(example shown: Ic/Ic0 = 0.80 corresponding to Pmax = 394 kN/m)
• Fatigue cycling at stress amplitude ratio Pmin/Pmax = 0.1
• Ic measured at peak load up to 100,000 cycles

Ic tests

Ic tests mid-cycling Fatigue loading profile



Fatigue Data under Transverse Compression
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Overall promising for safe operation in magnet applications
• Ic does not drop off a cliff with cycle count at a constant load amplitude
• Degrades gradually and predictably, usually only after significant initial degradation

Some trends can be seen
• Gap spacing has small effect 

on fatigue degradation

Ic vs cycles, CORC® cables



Fatigue Data under Transverse Compression
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Overall promising for safe operation in magnet applications
• Ic does not drop off a cliff with cycle count at a constant load amplitude
• Degrades gradually and predictably, usually only after significant initial degradation

Some trends can be seen
• Gap spacing has small effect 

on fatigue degradation
• Former size and 

corresponding REBCO 
winding strain has 
significant impact on fatigue 
degradation

Ic vs cycles, CORC® wires



Preliminary Axial Tension Measurements
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Test Setup
• Test machine capacity = 13 kN
• Load applied through current 

injection terminals
• Monotonic tests performed in 

load control increments



Preliminary Axial Tension Measurements
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Preliminary data
• One monotonic specimen each of CORC® wires 1 and 2 tested to-date
• Cross-section calculated by wire outer diameter (including heatshrink)
• Ic degrades sharply after onset of degradation, similar to individual tapes

Ic vs axial tension, CORC® wires



Preliminary Conclusions

20

Although tests are ongoing and different sample configurations are being 
tested as we speak
• The resilience of CORC® cables and wires in transverse compression up to 

100,000 cycles is very promising
• The Ic retention after 100,000 cycles is especially high when the peak load 

did not degrade Ic by more than 5 – 10 % before cycling
• Magnets will likely be designed at transverse loads resulting in no more than 

3 – 5 % Ic degradation, which means that load cycling likely won’t have a 
significant impact on the magnet performance  

Next investigations:
• Post-mortem extracted tape measurements on axial tension specimens, to 

investigate primary failure mechanisms in monotonic tension
• In-situ strain measurements in axial tension (Ic-ε)
• Fatigue behavior in axial tension
• Effect of winding angle on transverse compression performance


