Electromechanical Performance of CORC[®] Cables and Wires under Axial Tension and Transverse Compression

Danko van der Laan, Dustin McRae and Jeremy Weiss

Advanced Conductor Technologies & University of Colorado, Boulder, Colorado, USA

Supported by U.S. Department of Energy contracts DE-SC0007660, DE-SC0014009, DE-SC0015775 and DE-SC0018125

Advanced Conductor Technologies www.advancedconductor.com

CCA 2018, September 13th, 2018, Vienna, Austria

CORC[®] magnet cables and wires

RE-Ba₂Cu₃O_{7- δ} coated conductor made by SuperPower Inc.

Single tape wound into a CORC[®] cable

CORC[®] wires (2.5-4.5 mm diameter)

- Wound from 2-3 mm wide tapes with 30 μ m substrate
- Typically no more than 30 tapes
- Highly flexible with bending down to < 50 mm diameter

CORC® cable (5-8 mm diameter)

- Wound from 3-4 mm wide tapes with 30-50 μm substrate
- Typically no more than 50 tapes
- Flexible with bending down to > 100 mm diameter

Application of transverse compressive load

Measurement under transverse compressive load

- Load applied by two flat stainless steel anvils
- Load applied at 76 K in liquid nitrogen

Effects to be studied

Model CORC® samples

- Effect of gap spacing between tapes
- Effect of copper plating thickness

Practical CORC[®] cables and wires

- Effect of former size and substrate thickness
- Overall behavior of practical CORC[®] magnet cables ٠ and wires

Anvil

Model CORC[®] samples: Effect of gap spacing

Model CORC[®] sample

- Hand-wound
- Solid stainless steel former
- 3 layers, 6 or 9 tapes
- No epoxy impregnation!
- Gap spacing 0 or 1 mm
- Copper plating 5 μm thick

0 mm gap spacing

1 mm gap spacing

Model CORC[®] samples: Effect of copper thickness

Critical load decreases with copper plating thickness

Critical load decreases with gap spacing

Critical load [kN/m]

	/₅ decrease	20 μm copper plating Gap spacing:			5 μm copper plating Gap spacing:		
		0 mm	0.5 mm	1.0 mm	0 mm	0.5 mm	1.0 mm
	1%	250	200	150	360	210	200
	3%	260	200	160	420	250	230
	5%	270	220	180	450	290	240
Advanced Conductor Technologi	es		5				G

Transverse Compression on CORC[®] cables

CORC® cable layout

- Machine-wound
- 4.9 mm thick copper former
- 9 tapes wound in 3 layers
- Tapes with 50 μm substrate
- 0.1 or 0.3 0.4 mm gap spacing [

Critical load decreases with gap spacing Decrease in I_c is more gradual

Transverse Compression on CORC[®] wires

Advanced Conductor Technologies

Effect of winding strain on CORC® performance

Winding strain in CORC[®] cables and wires

- CORC[®] wire with 2.55 mm former and 30 μ m substrate: -1.16 %
- CORC[®] wire with 3.2 mm former and 30 μ m substrate: -0.93 %
- CORC[®] cable with 4.9 mm former and 50 μm substrate: -1.0 %

Critical transverse compressive load depends on initial strain state of REBCO layer Compressive load increase strain state toward irreversible limit

First estimate of critical transverse stress

Width of contact area determined by pressure sensitive paper

- Fixed applied load of 200 kN/m
- Average width of contact area between 0.9 and 1.16 mm

CORC[®] wire (2.55 mm former)

CORC[®] wire (3.2 mm former)

CORC[®] cable (4.9 mm former)

Critical load [MPa]

<i>I</i> _c decrease	CORC [®] -C1	CORC [®] -C2	CORC®-W1	CORC [®] -W2
3%	230	138	99	241
5%	283	178	115	270
10%	378	251	141	316

Critical transverse compressive stress > 230 MPa in optimized CORC[®] cables and wires

Effect of transverse compressive load cycling

Test procedure for cycling in liquid nitrogen

- Each sample is loaded to peak load responding to predetermined I_c retention: 95 97 %, 90 %, and 80 %
- Load cycled between 10 % and 100 % of peak load

Peak load with I_c retention > 95 %: No significant additional I_c degradation after 100k cycles Peak load with I_c retention < 90 %: Additional I_c degradation after 100k cycles < 5 – 10 %

Axial tensile stress setup

Testing CORC® wires with copper former

- Test machine capacity = 13 kN
- Load applied through current injection terminals
- Monotonic and cyclic stress applied in liquid nitrogen

Monotonic axial tensile stress test results

Sample details

- CORC[®] wire with 30 tapes
- Solid annealed copper former of 2.55 mm diameter

No reversible *I*_c reduction before irreversible stress limit of 177 MPa CORC[®] wire has yielded significantly before *I*_c degradation occurred

Stress-strain of CORC[®] wire former and tapes

Comparing stress-strain curves of CORC[®] wires

Stress-strain dependence calculated with rule of mixtures (ROM)

- 27 or 30 tapes with Yield stress 1,092.7 MPa
- 2.55 mm thick former with Yield stress of 109.7 MPa

Axial tensile stress fatigue of CORC[®] wires

Test procedure for cycling in liquid nitrogen

- Each sample is loaded to peak load responding to predetermined I_c retention: 95 97 %, 80 %, and 60 %
- Load cycled between 10 % and 100 % of peak load

Source of the change in I_c (decrease followed by recovery) during cycling unknown Once real degradation occurs at stress exceeding the irreversible stress limit, I_c falls off a cliff

Conclusions

Effect of transverse compressive load on CORC® cables and wires

- Effect of transverse compressive load on CORC[®] cable and wire *I*_c was determined at 76 K
- Larger gaps spacing between tapes and thicker copper plating on tapes decrease irreversible load limit
- Irreversible transverse compressive load limit of practical CORC[®] cables and wires depends on strain state of their tapes after winding
- Cyclic loading to 100,000 cycles doesn't cause significant additional degradation at peak stress where retention of I_c is > 90 %
- First estimate of critical transverse compressive stress: > 230 MPa

Effect of axial tensile stress on CORC[®] wires

- Effect of axial tensile stress on CORC[®] wire *I*_c has been determined at 76 K
- Critical stress of 30-tape CORC[®] wire with annealed copper former > 177 Mpa
- Critical stress can be increased by using harder temper copper in former
- *I*_c degradation occurs when CORC[®] wire has yielded significantly
- Stress cyclic to 100,000 cycles only affects I_c when peak stress much higher than irreversible stress limit
- Significant difference in failure mode between transverse compression and axial tension

