Current status of CORC® cables and wires

Danko van der Laan, Dustin McRae* and Jeremy Weiss

Advanced Conductor Technologies & University of Colorado Boulder, Colorado, USA

*moved on to greener pastures outside of superconductivity (read: medical technology)

Work supported by

U.S. Department of Energy awards numbers DE-SC0009545, DE-SC0013723, DE-SC0014009, DE-SC0015775, SC0018125 and DE-SC0018127

Advanced Conductor Technologies www.advancedconductor.com

LTSW, Charleston, SC, February 12, 2019

CORC[®] magnet cables and wires overview

CORC[®] wires (2.5-4.5 mm diameter)

- Wound from 2-3 mm wide tapes with 30 μ m substrate
- Typically no more than 30 tapes
- Highly flexible: bending down to 50 mm diameter
- CORC[®] wires with 25 μm substrate coming soon

CORC® cable (5-8 mm diameter)

- Wound from 3-4 mm wide tapes
- Typically no more than 50 tapes
- Flexible: bending down to > 100 mm diameter

CORC®-Cable In Conduit Conductor (CICC)

- Performance as high as 100,000 A (4.2 K, 20 T)
- Combination of multiple CORC[®] cables or wires
- Bending diameter down to 1 meter

UNIVERSITY OF TWENTE.

Exploring the mechanical limits of CORC[®] cables and wires

CORC® cables and wires now being used in actual magnets

- CCT accelerator magnets (Xiaorong Wang Berkeley National Laboratory)
- Series-connected Common Coil hybrid (Ramesh Gupta Brookhaven National Lab.)
- CORC[®] insert solenoid (Applied Superconductivity Center NHMFL)

=> See talk Jeremy Weiss Wednesday 9:35 AM

Conductor requirements for safe use in magnets

- Electrical performance: $I_{opp} > 5 20$ kA and $J_e > 300 600$ A/mm²
- Sufficient copper fraction of around 50 %
- Sufficient conductor transposition
- Mechanical strength to ensure no performance degradation

Major campaign underway to determine, understand and improve the mechanical performance of CORC[®] cables, wires and CICC

- Transverse compressive stress
- Axial tensile stress
- Conductor reinforcement where required

Application of transverse compressive load

Load applied by two flat stainless steel anvils

- Results in two line contacts
- Contac width likely changes with load
- Conversion of kN/m to MPa requires contact width to be known
- Top anvil 50 mm, bottom anvil 115 mm in length

D. C. van der Laan, D. M. McRae, and J. D. Weiss, *Supercond. Sci. Technol.*, **32**, 015002 (2019).

Advanced Conductor Technologies www.advancedconductor.com

Load applied at 76 K in liquid nitrogen

Effect of former size and substrate thickness

Transverse compression may reduce minimum tape bending diameter!

CORC[®] cables and wires to be studied

- CORC[®] wire with 2.55 mm former and 30 μm substrate: -1.16 %
- CORC[®] wire with 3.2 mm former and 30 μm substrate: -0.93 %
- CORC[®] cable with 4.9 mm former and 50 μ m substrate: -1.0 %

Transverse Compression on CORC® cables and wires

	<i>I</i> _c / <i>I</i> _{c0}	CORC®-C1	CORC®-W1	CORC®-W2
-	0.97	124	115	217
	0.95	160	133	243
	0.9	226	163	284

First estimate of critical transverse stress

Width of contact area determined by pressure sensitive paper

- Fixed applied load of 200 kN/m
- Average width of contact area between 0.9 and 1.16 mm

CORC[®] wire (2.55 mm former)

CORC[®] wire (3.2 mm former)

CORC[®] cable (4.9 mm former)

Critical stress [MPa]

<i>I_c/I_{c0}</i>	CORC [®] -C1	CORC [®] -W1	CORC [®] -W2
0.97	138	99	241
0.95	178	115	270
0.9	251	141	316

Critical transverse compressive stress > 240 MPa in optimized CORC[®] cables and wires

Effect of transverse compressive load cycling

Test procedure for load cycling in liquid nitrogen

- Each sample is loaded to peak load responding to predetermined I_c retention: 95 97 %, 90 %, and 80 %
- Load cycled between 10 % and 100 % of peak load

Peak load with I_c retention > 95 %: No significant additional I_c degradation after 100k cycles Peak load with I_c retention < 90 %: Additional I_c degradation after 100k cycles < 5 – 15 %

Axial tensile stress setup

Testing CORC® wires with copper former

- Test machine capacity = 13 kN
- Load applied through current injection terminals
- Monotonic and cyclic stress applied in liquid nitrogen

D. C. van der Laan, D. M. McRae, and J. D. Weiss, accepted for publication Supercond. Sci. Technol., (2019)

Monotonic axial tensile stress test results

Sample details

- CORC[®] wire with 30 tapes
- Solid annealed copper former of 2.55 mm diameter

- No reversible I_c reduction before irreversible stress limit of 177 MPa
- CORC[®] wire has yielded significantly before I_c degradation occurred

Stress-strain of CORC[®] wire former and tapes

• Former: 109.7 MPa

Comparing stress-strain curves of CORC[®] wires

Stress-strain dependence calculated with rule of mixtures (ROM)

- 27 or 30 tapes with Yield stress 1,092.7 MPa
- 2.55 mm thick former with Yield stress of 109.7 MPa

Critical stress could be increased significantly by using harder Cu formers

Axial tensile stress fatigue of CORC[®] wires

Test procedure for cycling in liquid nitrogen

- Each sample is loaded to peak load responding to predetermined I_c retention: 95 97 %, 80 %, and 60 %
- Load cycled between 10 % and 100 % of peak load

- Source of the change in I_c (decrease followed by recovery) during cycling unknown
 Once degredation accurate at stress over a ding the improversible stress limit. I falls off a slift
- Once degradation occurs at stress exceeding the irreversible stress limit, I_c falls off a cliff

CORC[®]-CICC development for testing in SULTAN

CORC®-CICC #1 and #2 for testing in SULTAN

- Collaboration with Herman ten Kate and Tim Mulder (CERN)
- Both samples are 6-around-1 CICC based on CORC[®] cables
- Goal is 80 kA at 10.8 T background field

Initial SULTAN test results

- Sample #1 degraded due to strand deformation
- Sample #2 was limited to current of less than 50 % of I_c due to damaged Sample #1

Sample #1 has been replaced and next test is planned within 3 months

CORC[®]-CICC development for testing in SULTAN (Cont.)

CORC[®]-CICC #3 for testing in SULTAN

- Collaboration with Herman ten Kate and Tim Mulder (CERN)
- 6-around-1 CICC based on CORC[®] cables
- Goal is 80 kA at 10.8 T background field ٠
- Using internal support to decouple CORC[®] strands ٠
- Improved CORC®-CICC terminals
- SULTAN test in 5 6 months

- Collaboration with Herman ten Kate, Tim Mulder ٠ (CERN) and Xiaorong Wang (LBNL),
- Based on CORC[®] 12 14 wires for higher degree of • transposition and better flexibility
- Goal is 80 kA at 10.8 T background field ٠
- Using internal support to decouple CORC[®] strands
- SULTAN test in 9 12 months

Sample #3 Extruded copper keystones

rerre

Advanced Conductor Technologies www.advancedconductor.com

UNIVERSITY OF TWENTE, BERKELEY LAB

Conclusions

Effect of transverse compressive load on CORC® cables and wires

- Irreversible transverse compressive load limit of practical CORC[®] cables and wires depends on strain state of their tapes after winding
- Cyclic loading to 100,000 cycles doesn't cause significant additional degradation at peak stress where retention of I_c is > 90 %
- Increase of irreversible stress limit possible using thicker and/or harder formers

Effect of axial tensile stress on CORC® wires

- Critical stress of 30-tape CORC[®] wire with annealed copper former > 177 Mpa
- Critical stress could likely be increased by using harder temper copper in former
- Stress cyclic to 100,000 cycles only affects I_c when peak stress much higher than irreversible stress limit

Development of CORC®-CICC for SULTAN test

- Three samples planned for testing in 2019
- Internal support to decouple CORC[®] strands to prevent cumulative stresses
- Improved CORC[®]-CICC terminations with lower resistance and improved current distribution

